
Smart Parking Garage System
Oscar A. Acuna, Jordan C. Johnson, Kyle

Carpenter, and M. Ridwan

Dept. of Electrical and Computer Engineering,
University of Central Florida, Orlando, Florida,

32816-2450, U.S.A

Abstract — Finding an available space in a parking garage
can be a hassle during busy hours, mainly because driving
around a garage trying to find a free spot is a
time-consuming task that creates more traffic and delays.
The Smart Parking Garage System is a parking guidance
system that can solve this problem by reducing the time it
takes to find an available spot. The Smart Parking system
uses a combination of a server and LED signs to display the
number of available parking spots in different car garage
areas by using computer vision to determine where cars are
parked. A camera runs a vehicle detection model to detect
cars on its built-in AI module, determines whether a car is
entering or leaving a parking section, and updates a server
with its findings. A Java program running in the server uses
the camera information to compute the new number of
available spaces in that section, then updates a nearby LED
display via a custom printed circuit board. The project is
being designed as a proof of concept that can be expanded
with the right resources and optimizations. A set of
strategically positioned cameras and LED displays
throughout an entire garage can guide drivers to areas and
levels with more empty spaces.
Index Terms — Computer vision, MySQL database,

printed circuit board, LED, control unit, graphics interface,
computer application, client-server system.

I. INTRODUCTION

In this world of technological advancements, with time,
peoples’ lifestyles, utilized systems, and methods of life -
have been improved. In many cases, these improvements
come from making the technology that life revolves
around ‘Smart.’ The word smart, in this context, refers to
devices that are interconnected and able to communicate
with other technologies. Vehicles are an integral part of
everyone’s modern-day lives; even though certain aspects
are being modernized, when it comes to vehicle parking
and associated systems facilitating vehicle parking - there
have not been many advancements.

One of the main problems is finding parking spots
before the garages reach full capacity in UCF. One
modern solution could be the implementation of a system

to report the available parking spots in the parking garages
accurately. Thus, the Smart Parking Garage System
emphasizes making the daily parking experience more
modernized and hassle-free with the implementation of
technology. Leveraging the functionalities of Computer
vision, the system can detect the vehicles entering or
leaving the designated parking locations and also keep
track of the total count of the cars. This vehicle data is
sent to a remote MySQL database utilized by the control
unit. The Control Unit allows administrators to see the
parking situation in a garage. The control unit, using the
count values from the database, computes the total parking
spots left in the location and sends the data to the PCB via
the IP of the board. Later, an LED system receives the data
from the microcontroller, and the computed number of
available parking spots is displayed. A web interface was
also planned to be worked on. However, due to the limited
development time, the web application portion of the
system was not implemented.

II. REQUIREMENT SPECIFICATIONS

The requirement specifications for the design of the
smart parking system are shown in Table 1.

Table 1 Specifications

Component Specification

Camera 95% accuracy in detecting cars that are
entering or leaving a parking area.

LED Display Minimum brightness of 1,000 nits

Entire
System

Update the LED displays within 10
seconds of car detection.

Control Unit The software and database should be
designed to be scalable to support up to
100 cameras and 100 LED displays.

III. OVERVIEW OF THE SYSTEM

The Smart Parking Garage System consists of four
major components: a camera for computer vision, a
control unit to keep track of the available spaces, a custom
printed circuit board, and an LED display, as shown in
Fig. 1.



Fig. 1. Parking Garage System Overview

The system starts with the camera's onboard computer
vision detecting moving vehicles and determining whether
they are entering or leaving a parking row. It sends that
information to the control unit, which is inserted into a
database running on a server. The camera sends its id
number and either a -1 for every car entering to denote one
less parking space available or a +1 for every car leaving
to indicate that a parking space has become available. A
java program running in the server constantly checks for
any updates from the camera by searching for new rows in
the camera log table in the MySQL parking system
database. When it finds one, it computes the new number
of available parking spots in the section where the camera
is located, which is determined by the camera id, updates
the garage level's open spaces, and the total garage
available spaces. Then, the program sends the new number
to the corresponding printed circuit board using the
board's IP address. The microcontroller grabs the new
number and updates its connected LED display with the
number of free spaces in the parking section it covers.

IV. DESIGN

The project specifications and the team’s decisions
guided the current design. One decision made was to
implement a wired network over a wireless one (e.g.,
Wi-Fi). A wired network allowed the system to take
advantage of power over ethernet (PoE), a technology that
enables the injection of electricity into the same cable that
transmits data, which could be used to power the cameras
and the custom printed circuit boards. In contrast, a Wi-Fi
network comprising many access points and wireless
devices could create Wi-Fi congestion caused by too many

transmissions within a parking garage using the same
radio frequencies, potentially slowing down the system
and creating interference for other Wi-Fi devices nearby.
This and other design decisions are discussed further
below.

A. Camera and Computer Vision

Two of the team's goals were to implement computer
vision to detect vehicles and choose a
powered-over-ethernet device. In addition, to meet the
project’s scalability specification, the camera needed to
have onboard processing capabilities, which allowed for
doing all the computer vision computation on the camera
itself rather than on a host computer. Having standalone
cameras meant a virtually unlimited number of cameras
could be added to the parking system without worrying
about having a powerful host computer to process all the
computer vision computation. Rather than building a
camera by putting together several components, the team
decided on an off-the-shelf solution; therefore, the OAK-1
PoE camera was chosen. The camera’s embedded AI
processing capabilities, along with RGB vision, allow the
camera to work independently from a host computer and
run necessary models to detect objects. This camera differs
from all other considered cameras because of the
communities’ online support, the company’s active online
support, high onboard computing power, and energy
efficiency.

The camera’s manufacturer offers many object
recognition software models based on DepthAI, a spatial
AI platform that allows robots and computers to recognize
objects and features and their location in the real world.
At an early stage of the project, their car detection model,
vehicle-detection-adas-0002, included in their DepthAI
demo python script from their DepthAI repository [1], was
utilized for the initial testing of vehicle detection and
count functionality. For the final implementation, the
sample python program, gen2-people-tracker, from the
DepthAI experiments repository [2] was utilized as a
starting point for the camera computer vision code. As the
name implies, gen2-people-tracker was written to track
walking people using a people-tracking model. However,
for vehicle detection, a vehicle detection model from
OpenVino called vehicle-detection-0202 [4] was imported
to replace the people tracker model. The vehicle model
conveniently returns the image ID, label, confidence
percentage, the x and y coordinates of the upper left



corner, and the bottom right corner of each vehicle
detected.

Determining the direction of a vehicle was
accomplished by using the coordinates returned by the
vehicle tracking model. A midpoint (i.e., an x and y pair)
is computed using the return coordinates when a vehicle is
detected for the first time and when it is last seen before it
leaves the camera's field of view, thus providing (x1, y1)
and (x2, y2) pairs, where the 1 indicates the initial location
and the 2 the final location of the vehicle, where the origin
is the upper left corner of the captured frame. Then, a pair
is subtracted from the other; if the difference is a negative
number, it means the car was moving right (entering the
premises), and if the value is positive, it depicts the car
was moving left (leaving the premises). This computation
is done with every car entering and leaving the camera’s
field of view.

In some occasions, a vehicle blocked by another one
from the camera view is counted twice. Once when the
camera no longer sees the car when it is being blocked,
and a second time when the car comes back into the view
of the camera when either the blocking car moves or when
the car itself moves into the camera view again. To
overcome this issue, a threshold of .25 (i.e., 25% of the
camera frame width) was implemented. A vehicle has to
travel in the x direction for at least the threshold to be
counted as moving.

A remote database was utilized for the camera to send
the necessary information to the control unit. Once the
vehicle is detected either entering or leaving, the program
updates a variable to keep track of the entering or leaving
state of the vehicle. If the camera detects a vehicle
entering the parking space, it updates the value with a ‘-1’,
depicting one less parking spot available. The leaving state
of the detected vehicle updates the variable with a ‘+1’,
essentially indicating one additional parking spot available
within the premises. In the end, the python code sends the
value of the mentioned variable to the camera_log table in
the parking system database.

B. Control Unit

The control unit sits between the cameras and the
custom-printed circuit boards (PCB) that controls the LED
displays. The control unit, shown in Fig. 2, consists of a

server, an ethernet switch, and a battery backup to keep
the system running in case of a power outage.

Fig. 2. Control Unit Block Diagram

1. Control Unit - PoE Ethernet Switch

Deploying this parking system to an entire garage, such
as Garage C at UCF, would require a switch with many
ports, but a small 5-port PoE switch would be enough for
a proof of concept. There are different versions of PoE.
There is PoE or Type 1, PoE+ or Type 2, all the way to
type 4, each backward compatible with the previous
version. The camera requires PoE Type 1 (802.3af), and
after searching online for PoE ethernet switches, the team
settled with a 5-port ethernet PoE switch with four PoE+
ports (STEAMEMO brand, model GPOE204), enough to
run up to two cameras and two custom PCBs.

2. Control Unit – Uninterruptible Power Supply (UPS)

A battery backup was added to the system to keep the
cameras and the PCB boards running for at least 10
minutes in case of a power outage. The capacity of the
UPS needed was calculated as follows: 52 watts maximum
power consumption of the PoE switch plus the 36 watts
consumed by the server for a total of 88W. The team opted
for the UPS model Back-UPS 600 from APC, which
provides about 23 mins of electricity at 100W.

3. Control Unit – Server Hardware

One of the most cost-effective computers comes with a
built-in CPU and Memory RAM and usually has no PCIe
expansion slots, such as a Raspberry Pi. These boards are
called Single-Board Computers, and there are many
options to choose from. Initially, the Intel-based Odyssey
X86J4125864 board from Seed was picked as the server;
however, it became unavailable for a long time and only
became available as a backorder. Therefore, the team
decided to try getting a Raspberry Pi 4 model B with 8GB
of RAM, which was not a simple choice since it was out



of stock everywhere. Still, it became available later as a kit
from the Canakit website. By the time it was ordered and
received, the software development for the parking system
had already begun using an intel-based computer. Since
the Raspberry Pi is based on the ARM architecture, the
team predicted some incompatibilities. After a few days of
unsuccessfully trying to run java version 17, MySQL
database, and the parking system software, the Raspberry
Pi was put aside in lieu of an intel-based computer.
Finally, a mini pc capable of running Microsoft Windows,
and thus intel-based, was ordered. The model Mini S from
Beelink has an 11th Generation Intel Celeron processor,
model N5095, which has four cores and runs up to
2.9GHz; it has 8GB DDR4, 128GB SSD, and Windows 11
Pro. After a quick preliminary test, it was determined that
this minicomputer could run the software needed without
any issues.

4. Control Unit – Server Software

The server hosts the system's database, a program that
tracks the available spaces in the garage, and the graphical
user interface (GUI) program to interact with the parking
system. Although several database engines and
programming languages could run on Windows, the team
decided to use a MySQL database and Java as the primary
programming language for one main reason; one of the
team members already knew how to integrate these two
technologies.

The MySQL Workbench program is part of the MySQL
engine, and it was used to create and manage the database
and to load sample data for the development and testing of
the java programs. Several database tables were designed
to keep track of the available spaces in each section, each
level, and the entire garage. The database also includes the
camera log table, where the camera inserts the change in
available spaces (i.e., +1 or -1, as explained in the
overview section). For every new update from the camera,
the database engine automatically marks that row as new
by setting the field isNew to 1. Fig 3 shows a sample of
the camera log table design.

Fig. 3 Camera log table in MySQL database.

A program was needed to keep track of the parking
spaces' availability by reading the camera log, updating
the sections, level, and garage data in the database, and
sending updated values to the LED display's PCB. So, a

custom program was developed to constantly check the
camera log table for those rows where the isNew field is 1.
The code grabs the ±1 from the new row to compute the
new open spaces for that section and transmits the result to
the corresponding LED display via ethernet using the IP
address of the display's board; it then sets the field isNew
to 0 in the camera log table to avoid processing them as
new again. This program is the heart of the Smart Parking
Garage System and runs in the background independently
from the graphical user interface (GUI).

A GUI was developed to manage the parking system.
Written using JavaFX and Scene Builder, the user-friendly
program was designed with the essentials in mind. As
shown in Fig. 4, the GUI has several sections to allow the
user to see the current usage of the garage, change
settings, and add, remove, and configure cameras and LED
displays.

Fig. 4. Graphical User Interface

C. Custom Printed Circuit Board (PCB)

The custom PCB in our smart parking system serves as
the link between the control unit and the LED signs. It
receives data on available parking spots from the server
and then uses this information to display it on the LED
signs. In our final design, there will be two PCBs, as each
LED sign will have its own PCB connected to it.

One of the goals with the PCB was for it to receive both
data and power from the PoE switch. This was
accomplished by using a PoE splitter which takes the
cable from the PoE switch, carrying both data and power,
and isolates them onto two separate cables. The data is
transferred to another ethernet cable while the power is
transferred to a 5V 2.4A DC Male Plug. A simple block
diagram of the PCB is shown in Figure 5, where the black
lines represent data, the red lines represent power, and the
blue lines represent data and power.



Fig. 5 PCB Block Diagram

1. PCB Components

The components on the PCB, excluding the LED
Matrix, are listed below:

● 5V PoE Splitter
● LD1117V33 Linear Voltage Regulator
● 2.5 x 5.5 mm Barrel Jack Connector
● RJ45 Ethernet Port with Integrated Magnetics
● ACHL-50MHz-EK Oscillator
● ATSAME70J19B Microcontroller
● TLK111 Ethernet PHY Chip
● Three 2x1 Female Headers
● One 1x8 Female Header
● One 2x8 Male Header
● MPLAB Snap In-Circuit Debugger
● Various SMD Components

Two of the biggest influences on decision making when
it came to picking each of these components were what
would allow us to have the least amount of components on
our PCB as possible, and what would work well with our
microcontroller. Since the microcontroller required a 3.3V
power input, we only picked components that also
required a 3.3V connection, allowing us to use only one
regulator circuit. The component choices affected by this
included the Ethernet PHY Chip, the 50 MHz Oscillator,
and the RJ45 Ethernet Port.

Continuing on the regulator circuit, one component that
has raised some questions was using a linear voltage
regulator rather than a switching voltage regulator. Our
decision to use a linear regulator comes from the fact that
our board does not pull a lot of current (150 mA at the
most). Because of this, regulator efficiency was not
something that we were concerned about. With this said,
after testing, we did decide to change our voltage input in
our original design from 12V to 5V as this made more
sense for reducing heat dissipation from the regulator.

The header pins that exist on the PCB give access to
components that are external to the board. The three 2 x 1
female headers are used for voltage test points and erasing
the microcontroller if necessary. The 1x8 female header is
used to interface the debugger with the PCB to
communicate with the host computer, and the 2x8 male
header is used to interface with the LED sign.

2. Board Layout

The PCB for the smart parking system implements a
two-layer design with components soldered on both the
top and bottom of the board. The top of the board includes
SMD components along with all the major components,
including the ethernet port, barrel jack connector,
oscillator, microchips, and header pins. The bottom of the
board only includes SMD components such as resistors,
ferrite beads, and capacitors.

There are two reasons we decided to design the board
this way, with the first being that we wanted a PCB with a
compact design of 100 x 100 mm. Our design satisfied this
goal with final dimensions of 99 x 43 mm. The second
reason is that the ethernet port, microcontroller, and
ethernet PHY required that some of their SMD
components, such as bypass capacitors, be as close to their
respective pins as possible, which required us to place
some of these components on the bottom of the board.
Although this was a requirement to our design that we
were not initially expecting, it further helped us reach our
goal of having a compact design since placing SMD
components on the bottom saved us a lot of space on the
top layer of the board. Images of the top and bottom of the
board are shown in Figures 6 and 7.

Fig. 6 PCB Layout (Top)



Fig. 7 PCB Layout (Bottom)

D. LED Display

The LED display is the primary interface for drivers in
the parking garage to determine available parking spots.
The displays are simple in nature, only providing an arrow
indicator and the number of available spots. The display
has to be adequately bright (hitting the 1000 nits baseline)
and have clearly decipherable numbers and icons.

The physical dimensions of the display are 5 x 10 inches
with a resolution of 32 x 64 pixels. This results in numbers
with a maximum height of 5 inches, making them
adequately visible from distances within the parking
garage. The symbols on the display will be easy to
distinguish with basic fonts for the numbers, as shown in
Figure 8.

Fig. 8 Example Display Content

1. Powering the LED Display

To supply power to the LED Display, we are required to
input a regulated 5V connection. This power input reaches
the LED display through a 4-pin female Molex connector
which is terminated on the other end with a pair of spade
terminals, one for Vcc and one for GND. In a worst-case
scenario, one of these 32 x 64 LED displays can pull up to
about 3.4 A, so we have decided to use a 5V 4 A
switching power supply to meet these needs [5]. This
switching power supply is terminated with a 5.5 x 2.1 mm
male DC plug, so we will be using a female barrel jack

adapter to interface with the spade terminals on the cable
connected to the LED Display.

2. Driving the LED Display

In order to interface with the LED display, a number of
connections are needed:

● 4 Demux lines
● R0, G0, and B0 lines for rows 1 - 16
● R1, G1, and B1 lines for row 17 - 32
● Clock
● Latch
● Output Enable
● GND

Since the display cannot continuously drive all 2048
pixels without having exorbitant hardware requirements
and excessive power draw, it utilizes a 1/16th scan rate.
This results in two rows displaying at any given moment
before another set of two rows are driven. The display
utilizes 24 LED controllers, which output to specific
regions of the display with specific colors (red, green, or
blue). To get a specific pattern, the desired order of high or
low values needs to be clocked into the LED controllers
and shifted into each following LED controller (8 in total
per color, 4 per row). Once all the LED controllers are
filled, the latch is triggered, and the values are pushed to
the pixels. The only obstacle left is the output enable
being triggered, then the display updates to the new data.

Normally an LED display would have existing driver
code and libraries available to easily get started
communicating with it, but in our case, that was not an
option. The existing code is targeted at Arduinos and is
built on existing Arduino libraries, making it extremely
complex for porting over to another platform. With the
options limited, the choice became obvious to write a
custom and simple driver for the display that would suit
our needs. Through resources from Ray’s Logic blog post
[6], we were able to determine how the display operates as
described previously.

The current driver code handles driving the display
using loops that iterate through each row address
combination by driving the demux pins with specific
values (2^4 = 16 total addresses). When a specific address
is set, two rows 15 lines apart can have data pushed to
them through the R0, G0, B0, and R1, G1, and B1 lines.
Data is pushed into these lines 64 times, then latched and
sent to the pixels. This entire process must happen at a
high enough speed for the display to not have flickering
discernible to the human eye, hence the choice of the
ATSAME70J19B microcontroller, which can run at 300
MHz, making it more than capable of driving the display.



2. Ethernet

The ethernet controller onboard the MCU is referred to
as the ‘GMAC’ and implements a 10/100 Mbps ethernet
MAC. Though it is referred to as the GMAC, it does not
support gigabit ethernet.

Implementing ethernet on our microcontroller (MCU)
was thought to be comparatively easy to that of other
components since the ethernet controller was integrated
into our MCU. Our design would not have required the
microcontroller to send any transmissions to the server
(except for the initial handshake) but to instead listen for
any new values sent in by the server and, in turn, route the
data over to the LED display handler. Since the MCU only
needed to receive data over ethernet, only one direction of
ethernet functionality needed to be prioritized.

Ethernet being a common interface, seemed to make it
easy to find information on best practices or methods to
implement into our code. For handling ethernet
transactions, the MCU was to receive ethernet hardware
interrupts whenever a new packet arrived, at which case
the value from the data packet would be passed into the
function to display a value on the LED display. By
utilizing hardware interrupts, the design would perform far
more efficiently than a software polling solution which
could result in a loop checking for new changes before
every cycle of driving an address of the LED display.

However, the ethernet functionality was not successfully
completed by the end date due to a number of problems
related to porting the needed TCP/IP stack over to our
MCU. The existing TCP/IP stack provided by Microchip
lacked information on porting it over to other MCUs and
was extremely complex. The recommended Harmony
software by Microchip also did not create working ports
of the stack either, resulting in generated designs that
yielded no results due to improper connections and
configurations with the PIO. With more time, we may
have been able to port a new TCP/IP stack like the open
source lwIP or managed to fix Harmony’s code generation
problems.

V. TESTING

At the time of this writing, the integration of the whole
system has not been tested yet. Although a preliminary
integration test between the camera and the control unit
was completed, the PCB's ethernet portion was still in
development.

The main computer vision testing was done in the UCF
parking garage C. The first test was done at night, on the
first floor of the parking garage, overlooking multiple
lanes. The Smart Parking Garage system is designed to
have a camera detecting the cars entering or leaving a
parking row (i.e., monitoring two lanes only, one entering
and one leaving). The vehicle detection model did not
perform well when more than two lanes were in the
camera's view because it caused the camera to count those
cars moving in the background occasionally. Thus in the
first test of a batch of 56 cars, the camera had an accuracy
of 87.5%. In most of the inaccuracies, the camera detected
those extra cars in the background. To overcome this
issue, the camera angle was adjusted to have the desired
two lanes in the field of view of the camera as much as
possible. Additionally, the code was modified to ignore
any car captured in the top 25% of the camera video feed
since this region was still capturing the other parking row
over. A second testing batch was done with 72 cars
passing by, from which 68 were detected and counted as
expected, resulting in a 94.44% accuracy rate. The team is
still investigating ways to improve the accuracy even
more. The testing results highlighted the need to calibrate
a camera for the area it monitors, as camera angles and
regions of interest need to be adjusted to obtain the highest
accuracy possible.

Testing the main java program was partially done by
having it read the database looking for new data inserted
by the camera, and updating the database with the new
number of available spaces. The program successfully
read and updated the database according to whether more
spaces became available or not. The GUI was tested by
loading the database with sample data and then having the
GUI program read the entire database and display it on the
screen. Additional tests will be done very soon.

VI. CONCLUSION AND REFLECTIONS

The Smart Parking Garage System tries to solve
everyday parking difficulties by leveraging the latest
advancements in Computer Vision, software, and
hardware implementations. The current system introduces
the possibility of utilizing multiple cameras to aid the
overall parking experience and a proof of concept of a
web-based app for the users. With more time, the team
could have finished the ethernet portion of the PCB to
have a finished product.

Implementing software development, database usage,
administrative graphics interface, computer vision for
detection and firmware development, a customed PCB,



and LED implementation to construct a fully functional
system makes the Smart Parking Garage Project unique.
Such implementation would bring engineers from different
practices together and collaborate to develop and improve
the system further. This project has enabled the team to
work in a collaborative environment where teammates
have helped each other to achieve a similar goal despite
the constraints of time limits or less experience in the
respective technologies used.

VII. FUTURE IMPROVEMENTS

One of the initial improvements the team agreed on was
the usage of multiple cameras. However, as a Senior
Design project, the team did not have enough financial
capability to afford multiple cameras for a more robust
implementation; but, with more resources, the system can
be upgraded to cover more locations.

One of the fastest and most convenient ways to reach
people is through mobile or web applications. A web app
and a mobile application to reach consumers would take
the system's functionality to another level. The team
explored this solution; the team researched and decided on
a MERN stack for a web-based and the phone app for the
consumers to use. However, after extensive discussion
between the team and the advisor halfway into the
semester, it was decided that implementing such a web
and phone application would not be possible within the
time limit. Thus, the web and phone app were left as a
stretch goal.

ACKNOWLEDGMENT

The authors wish to acknowledge the assistance and
support of Dr. Samuel Richie, who provided guidance
throughout the entire process of this project. The authors
would also like to thank the support teams of Microchip
and Luxonis, who also guided our project's design.

BIOGRAPHY

Oscar A. Acuna, a computer engineering
student at the University of Central
Florida, developed the database and the
Java programs and contributed to the
camera vehicle detection and LED matrix
driver programming. After graduation, he
plans to become a full-time employee at
NASA Kennedy Space Center, where he
currently interns.

Jordan C. Johnson, a 6th-year electrical
engineering student at the University of
Central Florida, developed the PCB for
the parking system. After he graduates,
he plans on starting his career at
Universal Creative or Burns &
McDonnell while pursuing his MBA and
P.E. license.

Kyle Carpenter, a 5th-year computer
engineering student at the University of
Central Florida, developed LED display
driver code, ethernet driver code, and
MCU software. Plans to work in fields
relating to Computer Architecture and
processor softcore design.

M Muhtasim Ridwan, a computer
engineering student at the University of
Central Florida, contributed to the
computer vision and database update for
the parking system. After he graduates,
he plans on starting his career as an
automation engineer, where he currently
interns.

REFERENCES

[1] Luxonis, DepthAI Demo v3.2.0 [Computer software].
https://github.com/luxonis/depthai

[2] Luxonis, depthai-experiments v3.2.0 [Computer
software],https://github.com/luxonis/depthai-experim
ents

[3] Luxonis. (n.d.). Converting model to MyriadX blob¶.
Luxonis. Retrieved November 13, 2022, from
https://docs.luxonis.com/en/latest/pages/model_conve
rsion/

[4] OpenVino. (n.d.). Vehicle-detection-ADAS-0002 -
openvino™ toolkit. OpenVINO. Retrieved November
13, 2022, from
https://docs.openvino.ai/2021.2/omz_models_intel_ve
hicle_detection_adas_0002_description_vehicle_dete
ction_adas_0002.html

[5] Sparkfun. Tutorials. RGB Panel Hookup Guide.
Powering the Panel. Retrieved November 14, 2022,
from
https://learn.sparkfun.com/tutorials/rgb-panel-hookup
-guide?_ga=2.114944391.1425153588.1668401408-4
93762454.1647527398#powering-the-panel

[6] RaysLogic. Adafruit RGB LED Matrix. Retrieved
November 14, 2022, from
https://www.rayslogic.com/propeller/Programming/A
dafruitRGB/AdafruitRGB.htm


